JA Modelling Simulation Based

Francisco Maion, PhD Candidate, 23/09/24, Princeton & IAS

man ta zabal zazu

Ę.) Universidad del País Vasco

Introduction

Cosmic-Shear

- Light travelling through the LSS gets gravitationally distorted
- Galaxy shapes will get distorted as well, or "sheared"

Cosmic-Shear

Amon et al (2021)

 $\begin{aligned} \xi_{+}^{ij} &= \int_{0}^{\infty} \frac{d\ell \,\ell}{2\pi} J_{0}(\ell\theta) P_{ij}(\ell) \\ \xi_{-}^{ij} &= \int_{0}^{\infty} \frac{d\ell \,\ell}{2\pi} J_{4}(\ell\theta) P_{ij}(\ell) \end{aligned}$

 $P_{ij}(\ell) = \int dw \frac{q_i(w)q_j(w)}{f_K^2(w)} P_{\delta}\left(\frac{\ell}{f_K(w)}, w\right)$

Adapted from Amon et al (2021) Secco & Samuroff (2021)

- CMB Planck TT,TE,EE+lowE
- CMB Planck TT, TE, EE+lowE+lensing
- CMB ACT+WMAP
- WL KiDS-1000
- WL KiDS+VIKING+DES-Y1
- WL KiDS+VIKING+DES-Y1
- WL KiDS+VIKING-450
- WL KIDS+VIKING-450
- WL KiDS-450
- WL KiDS-450
- WL DES-Y3
- WL DES-Y1
- WL HSC-TPCF
- WL HSC-pseudo-C_l
- WL CFHTLenS

Aghanim et al. (2020d)
Aghanim et al. (2020d)
Aiola et al. (2020)

Early Universe

Late Universe

- Asgari et al. (2021)
- Asgari et al. (2020)
- Joudaki et al. (2020)
- [•] Wright et al. (2020)
- Hildebrandt et al. (2020)
- Kohlinger et al. (2017)
- Hildebrandt et al. (2017)
- Amon et al. and Secco et al. (2021)
- Troxel et al. (2018)
- Hamana et al. (2020)
- Hikage et al. (2019)
- Joudaki et al. (2017)

Adapted from "Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies

- distorted

Intrinsic-Alignments

$$\langle \epsilon_i \epsilon_j \rangle = \underbrace{\langle g_i g_j \rangle}_{GG} + \underbrace{\langle \epsilon_i^{(s)} \epsilon_j^{(s)} \rangle}_{II} + \underbrace{\langle \epsilon_i^{(s)} g_j \rangle}_{IG} + \underbrace{\langle g_i \epsilon_j^{(s)} \rangle}_{GI}$$

II term: Correlations between physically close galaxies

Positive correlation

GI term: Correlations between one foreground galaxy and one background galaxy

Negative correlation

Adapted from Joachimi et al (2015)

Intrinsic-Alignments

Adapted from Secco & Samuroff (2021)

Non-Linearity

Adapted from Preston et. al (2023)

Why Should You Care?

Adapted from Lamman et al (2022)

Galaxy light that falls within aperture

Less likely to be observed

More likely to be observed

Physics	Proposed	Verified in sims	Constrained from LOWZ
Growth rate	<u>Taruya & Okumura (2020)</u>	X	<u>Okumura & Taruya</u> <u>(2023)</u>
Primordial (anisotropic) non-Gaussianity	<u>Schmidt, Chisari, Dvorkin (2015)</u>	<u>Akitsu+ (2021)</u>	<u>Kurita & Takada</u> <u>(2023)</u>
Primordial magnetic fields	<u>Schmidt, Chisari, Dvorkin (2015)</u> <u>Saga+ (2023)</u>	through PNG only	X
Isotropy	Shiraishi, Okumura, Akitsu (2023)	X	X
BAO	<u>Chisari & Dvorkin (2013)</u>	<u>Okumura, Taruya &</u> <u>Nishimichi (2019)</u>	<u>Xu+ (2023)</u>
Primordial gravitational waves	<u>Schmidt, Pajer, Zaldarriaga (2014)</u> <u>Chisari, Dvorkin, Schmidt (2014)</u>	<u>Akitsu, Li & Okumura</u> (2023)	X
Parity breaking	<u>Biagetti & Orlando (2020)</u>	X	X

Alignments probe cosmology

Elisa Chisari - Physics from IA - LILAC May 2024

Non-Linearity

To lowest order, the intrinsic shear of the galaxy shapes will be linearly related to the matter tidal field

$$\gamma^{I} = c_{s} s_{ij} = c_{s} \left(\partial_{x}^{2} - \partial_{y}^{2}, 2 \partial_{x} \partial_{y} \right) \nabla^{-2} \delta$$

Breaks down quickly at small scales.

EFTofIA can reach $k_{max} = 0.28 \, h/Mpc$ at the expense of adding many free parameters

Simulation-Based Modelling

Priors on Bias Parameters

(Zennaro, ..., Maion, 2022)

Cosmological Inference

Physical Origins of IA

Hybrid Lagrangian Models

Hybrid Lagrangian Models

Lagrangian Bias Expansion

N-Body Simulations

Hybrid models

Robust and valid to small scales

Modi, Chen, White (2020) Kokron et. al (2021) Zennaro et. al (2021) Hadzhiyska et al (2021) Pellejero-Ibáñez,...,**Maion** (2023) **Maion** et al (2024)

Bias Expansion

Symmetries and Physical Principles:

- Equivalence Principle (only $\partial^{2n} \Phi$ contributions allowed)
- Statistical Homogeneity
- Statistical Isotropy
- Scalar under rotations

Adapted from Desjacques et. al (2016)

Density:

1 st order	: δ
2 nd order	δ^2, s
Non-local	$: abla^2 \delta$
Stochastic	: E

 $\delta_g = b_1 \delta + b_2 \delta^2 + b_{s^2} s^2 + b_{\nabla^2} \nabla^2 \delta + \varepsilon$

Correlations are setup very early in the universe

 s^2

The modelled galaxy field must be advected from Lagrangian to Eulerian space

Zennaro et. al (2021)

Shape Bias-Expansion

Symmetries and Physical Principles:

- Equivalence Principle (only $\partial^{2n}\Phi$ contributions allowed)
- Statistical Homogeneity
- Statistical Isotropy
- Rank-2 tensor under rotations

$g_{ij} = c_s s_{ij} + c_{s\delta} \delta s_{ij} + c_{s\otimes s} (s \otimes s)_{ij} + c_t t_{ij} + c_{\nabla^2} \nabla^2 s_{ij} + \varepsilon_{ij}$

Shapes:

1st order 1st order : s_{ij} 2nd order : $(s \otimes s)_{ij}, \delta s_{ij}, t_{ij}$ Non-local Stochastic : ε_{ii}

:
$$\nabla^2 s_{ij}$$

$$\bigotimes s)_{ij} = \left(s_{il}s_{lj} - \delta_{ij}^{K}\frac{s^{2}}{3}\right)$$
$$t_{ij} = \left(\frac{\partial_{i}\partial_{j}}{\nabla^{2}} - \frac{1}{3}\delta_{ij}^{K}\right)\left(\theta(\mathbf{x}) - \delta(\mathbf{x})\right)$$

HYMALAIA

Monthly Notices ROYAL ASTRONOMICAL SOCIETY

MNRAS 531, 2684–2700 (2024) Advance Access publication 2024 May 23

HYMALAIA: a hybrid lagrangian model for intrinsic alignments

Francisco Maion[®],^{1,2}* Raul E. Angulo[®],^{1,3} Thomas Bakx,⁴ Nora Elisa Chisari[®],⁴ Toshiki Kurita[®] and Marcos Pellejero-Ibáñez^{®1}

¹Donostia International Physics Center, Manuel Lardizabal Ibilbidea, 4, E-20018 Donostia-San Sebastián, Gipuzkoa, Spain ²Euskal Herriko Unibertsitatea, Edificio Ignacio Maria Barriola, Plaza Elhuyar, 1, E- 20018 Donostia-San Sebastián, Gipuzkoa, Spain ³IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Bizkaya, Spain ⁴Institute for Theoretical Physics, Utrecht University, Princetonplein 5, NL-3584 CC Utrecht, the Netherlands ⁵Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Chiba 277-8583, Japan

Accepted 2024 May 21. Received 2024 May 21; in original form 2023 August 1

https://doi.org/10.1093/mnras/stae1331

HYMALAIA

Model Validation

To evaluate the performance of the model we will use the reduced chi-squared,

$$\chi_{\text{red}}^2 = \frac{1}{N_{\text{dof}}} \sum_{\ell,\ell'=0,2} \sum_{\alpha,\beta} \sum_{i,j} \left(P_{\alpha}^{(\ell)}(k_i,\Theta) - \widehat{P}_{\alpha}^{(\ell)}(k_i) \right) \left[C_{\alpha,\beta}^{\ell,\ell'} \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right) \left[C_{\alpha,\beta}^{\ell,\ell'} \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right) \left[C_{\alpha,\beta}^{\ell,\ell'} \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right) \left[C_{\alpha,\beta}^{\ell,\ell'} \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \frac{\widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right) \right]_{ij}^{-1} \left(P_{\beta}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right) \right]_{ij}^{-1} \left(P_{\alpha}^{(\ell')}(k_j,\Theta) - \widehat{P}_{\alpha}^{(\ell')}(k_j,\Theta) \right)$$

the Figure of Bias, defined as

FoB(k_{max}) =
$$\frac{\left|c_{s}^{\text{fid}} - c_{s}(k_{max})\right|}{\sqrt{\sigma_{\text{fid}}^{2} + \sigma_{c_{s}}^{2}(k_{max})}}$$

and the Figure of Merit, given by

FoM =
$$\sqrt{\det \left[\frac{\Theta_{\alpha\beta}}{\theta_{\alpha}^{\text{fid}}\theta_{\beta}^{\text{fid}}}\right]^{-1}}$$

 $\widehat{P}_{\beta}^{(\ell')}(k_j)\right)$

Model Validation

Variance Reduction

Variance Reduction

MXXL Simulation (Angulo et al 2013)

Angulo & Pontoon (2016)

$$\mathscr{P}(|\delta(\mathbf{k})|, \theta_{\mathbf{k}}) = \frac{|\delta|}{L^{3}P}e^{-|\delta|^{2}/L^{3}P}$$

Fix amplitudes of the initial modes to:

 $|\delta_L(\mathbf{k})| = \sqrt{P(k)} \qquad \theta(\mathbf{k}) \in [0, 2\pi]$

 $\delta(\mathbf{k})\delta(-\mathbf{k}) = \sqrt{P(k)}e^{i\theta(\mathbf{k})}\sqrt{P(k)}e^{-i\theta(\mathbf{k})} = P(k)$

¥ky

Villaescusa-Navarro (2018)

Pairing

Simulation A z = 0

A-IC *z* = 99

 $\delta_A(\mathbf{k}) = \sqrt{P(k)}e^{i\theta(\mathbf{k})}$ $\delta_B(\mathbf{k}) = \sqrt{P(k)}e^{i(\theta(\mathbf{k})+\pi)} = -\delta_A(\mathbf{k})$

B-IC z = 99

Simulation B z = 0

Pontzen et al (2016)

Statistics of biased tracers in variance-suppressed simulations

Francisco Maion,^{*a,b*} Raul E. Angulo^{*a,c*} and Matteo Zennaro^{*a*}

^aDonostia International Physics Center (DIPC),

Paseo Manuel de Lardizabal, 4, Donostia-San Sebastián 20018, Guipuzkoa, Spain ^bDepartamento de Física Matemática, Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, São Paulo CEP 05508-090, Brazil

^cIKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain

E-mail: francisco.maion@dipc.org, reangulo@dipc.org, matteo_zennaro001@ehu.eus

Received April 11, 2022 Revised August 18, 2022 Accepted September 15, 2022 Published October 11, 2022

Raul Angulo

Matteo Zennaro

COLA Simulations

- Both Methods () - Just Pairing

Variance Predictions

Model Precision

k[h/Mpc]

A simulation with mere 20% of the volume of one Euclid survey redshift slice is sufficient

Priors on Bias

Secco & Samuroff (2021)

Aricò et al (2021)

Bias Measurements

Probabilistic Shape Bias

Astronomy & Astrophysics manuscript no. output September 23, 2024

Probabilistic Estimators of Lagrangian Shape Biases: Universal **Relations and Physical Insights**

F. Maion^{1,2}, J. Stücker^{1,3}, and R. E. Angulo^{1,4}

¹ Donostia International Physics Center, Manuel Lardizabal Ibilbidea, 4, 20018 Donostia, Gipuzkoa, Spain

² Euskal Herriko Unibertsitatea, Edificio Ignacio Maria Barriola, Plaza Elhuyar, 1, 20018 Donostia-San Sebastián, Spain

³ Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria

⁴ IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain

September 23, 2024

©ESO 2024

Jens Stucker

Raul Angulo

Probabilistic Shape Bias

Stucker et al (2020)

Let *I* be the shape-tensor of halos/galaxies

$\langle \mathbf{I} | \mathbf{T}_0 \rangle$

$$\mathbf{C}_{K,n} = \frac{\partial^n \langle \mathbf{I} | \mathbf{T}_0 \rangle}{\partial \mathbf{T}_0^n} \Big|_{\mathbf{T}_0 = 0}$$

Probabilistic Shape Bias

Stucker et al (2024)

 $\left\langle \mathbf{I} \, | \, \mathbf{T}_{0} \right\rangle_{g} = \frac{1}{F(\mathbf{T}_{0})} \left\langle \mathbf{I} \frac{p(\mathbf{T} \, | \, \mathbf{T}_{0})}{p(\mathbf{T})} \right\rangle_{g}$

Large-Scale Tidal Field

Halos in Initial Conditions

Halos at Final Position

MillenniumTNG Pakmor et. al (2022)

Raul Angulo

MTNG Collaboration + many others

Tracing galaxies, their biases and mass throughout merger-trees

FM+(in prep)

MillenniumTNG

MTNG

More Stellar Winds

Carefully selected set of 500 DM-halos Varying 7 parameters of the IllustrisTNG GFM Stellar Winds BH Feedback Star-Formation Efficiency ✤ 30 points distributed in a wide Latin-Hypercube design 100k CPU-hours per resimulation

Conclusions

- IA modelling is crucial
 - Extracting info. from Euclid, LSST
 - Relevant from linear to non-linear regime
 - HYMALAIA goes well beyond linear regime
 - Precise with variance reduction
- Learning from simulations
 - Developed new estimators of shape bias
 - Priors from hydrodynamical simulations
 - Constrain shape-formation scenarios
- IA vs Baryonic Feedback

Innovative multi-zoom simulations with various sub-grid parameters

Find me at:

franciscomaion.com

Write to me at:

francisco.maion@dipc.org

Qualitative Understanding

$$P_{11}^{F}(\mathbf{k}) \approx P_{\mathbf{k}}^{L} + V_{-}^{1/2} \int_{\mathbf{q}_{1}} \sqrt{P_{\mathbf{k}}^{L} P_{\mathbf{q}_{1}}^{L} P_{\mathbf{q}_{1}-\mathbf{k}}^{L}} \cos \left[\theta_{\mathbf{k}} - \theta_{\mathbf{q}_{1}} - \theta_{\mathbf{q}_{1}-\mathbf{k}}\right] F_{ZA}(\mathbf{q}_{1}, \mathbf{k} - \mathbf{q}_{1})$$

$$+ \frac{V}{4} \int_{\mathbf{q}_{1}} \int_{\mathbf{q}_{2}} \sqrt{P_{\mathbf{q}_{1}}^{L} P_{\mathbf{k}-\mathbf{q}_{1}}^{L} P_{\mathbf{q}_{2}}^{L} P_{\mathbf{q}_{2}-\mathbf{k}}^{L}} \cos \left[\theta_{\mathbf{q}_{1}} + \theta_{\mathbf{k}-\mathbf{q}_{1}} - \theta_{\mathbf{q}_{2}} - \theta_{\mathbf{k}-\mathbf{q}_{2}}\right]$$

$$\times F_{ZA}(\mathbf{q}_{1}, \mathbf{k} - \mathbf{q}_{1}, \mathbf{k}) F_{ZA}(\mathbf{q}_{2}, \mathbf{k} - \mathbf{q}_{2}, \mathbf{k}).$$

$$egin{aligned} & eta_{oldsymbol{q}_1-oldsymbol{k}} \end{bmatrix} F_{ZA}(oldsymbol{q}_1,oldsymbol{k}-oldsymbol{q}_1,oldsymbol{k}) \end{aligned}$$

Qualitative Understanding

$$P_{1\delta^{2}}^{F}(\mathbf{k}) \approx V_{-\mathbf{k}}^{1/2} \int_{\mathbf{q}_{1}} \sqrt{P_{\mathbf{k}}^{L} P_{-\mathbf{q}_{1}}^{L} P_{-\mathbf{q}_{1}}^{L} \mathbf{q}_{1} - \mathbf{k}}} \cos \left[\theta_{\mathbf{k}} - \theta_{\mathbf{q}_{1}} - \theta_{\mathbf{k}-\mathbf{q}_{1}}\right] \\ + V \int_{\mathbf{q}_{1}} \int_{\mathbf{q}_{2}} \frac{\mathbf{k} \cdot (\mathbf{k} - \mathbf{q}_{12})}{|\mathbf{k} - \mathbf{q}_{12}|^{2}} \sqrt{P_{\mathbf{k}}^{L} P_{\mathbf{q}_{1}}^{L} P_{\mathbf{q}_{2}}^{L} P_{\mathbf{k}-\mathbf{q}_{12}}^{L}} \cos \left[\theta_{\mathbf{k}} - \theta_{\mathbf{q}_{1}} - \theta_{\mathbf{q}_{2}} - \theta_{\mathbf{k}-\mathbf{q}_{12}}\right] \\ + \frac{V}{2} \int_{\mathbf{q}_{1}} \int_{\mathbf{q}_{2}} \mathcal{K}_{1}(\mathbf{q}_{1}, \mathbf{k} - \mathbf{q}_{1}) \sqrt{P_{\mathbf{q}_{1}}^{L} P_{\mathbf{k}-\mathbf{q}_{1}}^{L} P_{\mathbf{q}_{2}}^{L} P_{\mathbf{k}-\mathbf{q}_{2}}^{L}} \cos \left[\theta_{\mathbf{q}_{1}} + \theta_{\mathbf{k}-\mathbf{q}_{1}} - \theta_{\mathbf{q}_{2}} - \theta_{\mathbf{k}-\mathbf{q}_{2}}\right]$$

$$\begin{split} (\delta\delta\delta)_{\pi} \sim & \int_{\boldsymbol{q}_{1}} \sqrt{\cdots} \underbrace{\cos\left[\theta_{\boldsymbol{k}} - \theta_{\boldsymbol{q}_{1}} - \theta_{\boldsymbol{q}_{1}-\boldsymbol{k}} - \pi\right]}_{-\cos\left[\theta_{\boldsymbol{k}} - \theta_{\boldsymbol{q}_{1}} - \theta_{\boldsymbol{q}_{1}-\boldsymbol{k}}\right]} F_{ZA}(\boldsymbol{q}_{1}, \boldsymbol{k} - \boldsymbol{q}_{1}) \\ = & -(\delta\delta\delta). \end{split}$$

 $P_{11}, P_{1\delta}, P_{\delta\delta} \supset (\delta\delta\delta)$

Qualitative Understanding

$$P_{\delta^2 \delta^2}^{F\&P} \approx \frac{1}{V_f} \int_{\boldsymbol{q}_1} \int_{\boldsymbol{q}_2} \sqrt{P_{\boldsymbol{q}_1}^L P_{\boldsymbol{k}-\boldsymbol{q}_1}^L P_{\boldsymbol{q}_2}^L P_{\boldsymbol{k}-\boldsymbol{q}_2}^L} \cos\left[\theta_{\boldsymbol{q}_1} + \theta_{\boldsymbol{k}-\boldsymbol{q}_1} - \theta_{\boldsymbol{q}_2} - \theta_{\boldsymbol{k}-\boldsymbol{q}_2}\right]$$

Let f be the local density bias function

$$f(\mathbf{T}) = \frac{p(g \mid \mathbf{T})}{p(g)}$$

and

 $\langle h | x \rangle = \frac{\int \langle h | x, y \rangle p(y | x) dy}{\int p(y | x) dy}$

then

 $= \frac{\mathbf{I}}{f(\mathbf{T}_0)} \int \langle \mathbf{I} | \mathbf{T}_S \rangle_g f(\mathbf{T}_S) p(\mathbf{T}_S | \mathbf{T}_0) d\mathbf{T}_S$ $\langle \mathbf{I} | \mathbf{T}_0 \rangle$

Per-object Bias Estimators

$$\mathbf{C}_{K,n} = \frac{\partial^n \langle \mathbf{I} | \mathbf{T}_0 \rangle}{\partial \mathbf{T}_0^n} \Big|_{\mathbf{T}_0 = 0}$$
$$c_K = -\frac{3}{2} \operatorname{tr}(\mathbf{KI})$$

Universal Relation

Secondary Dependence

Linear Lagrangian Bias

